Association of Rotavirus Vaccines With Reduction in Rotavirus Gastroenteritis in Children Younger Than 5 Years

A Systematic Review and Meta-analysis of Randomized Clinical Trials and Observational Studies Sun et al. JAMA Pediatr. 2021;175(7):e210347. doi:10.1001/jamapediatrics.2021.0347.

Background & Methods: 121 studies (57RCTs, 50 case-control studies, and 14 cohort studies) till July 2020 were analyzed.

- Studies reporting the efficacy, effectiveness, safety, or immunogenicity of rotavirus vaccine were included. Studies with fewer than 100 enrolled participants were excluded.
- The primary outcomes were rotavirus gastroenteritis (RVGE), severe RVGE, and RVGE hospitalization.
- Safety-associated outcomes included serious adverse events, intussusception, and mortality.

ACADEMIC P.E.A.R.L.S

```
Pediatric Evidence And Research Learning Snippet
```


Sun et al. JAMA Pediatr. 2021;175(7):e210347. doi:10.1001/jamapediatrics.2021.0347.

	No. with vaccine/	Positive with vaccine/positive		Favors	Favors
Studies	No. with placebo	with placebo, %	RR (95% CI)	vaccination	nonvaccinatio
LLR				_	
Shengli et al,23 2020	4582/4611	2.7/6.7	0.407 (0.332-0.499)	-	
P<.001	4582/4611	2.7/6.7	0.407 (0.332-0.499)	•	
Rotavac				_	
Bhandari et al, 38 2014	4534/2187	5.2/7.8	0.664 (0.548-0.804)	-	
P<.001	4357/2187	5.2/7.8	0.664 (0.548-0.804)	*	
Rotasiil				_	
Isanaka et al,46 2017	1780/1728	6.8/10.0	0.683 (0.546-0.853)	=	
Kulkarni et al. ³⁹ 2017	3527/3498	4.1/5.6	0.725 (0.588-0.894)	_	
Total / 2=0%; P<.001	5307/5226	5.0/7.1	0.705 (0.605-0.821)	•	
RV1					
HIC					
Bernstein et al. ⁸ 1999	108/107	1.9/16.8	0.110 (0.026-0.463)	<u> </u>	
Vesikari et al,15 2006	2572/1302	0.9/7.2	0.129 (0.083-0.201)		
Subtotal (2 = 0%; P <.001	2680/1409	1.0/7.9	0.027 (0.083-0.195)	-	
MIC					
Li et al,24 2014	1575/1573	1.7/5.7	0.300 (0.195-0.458)	-	
Ruiz-Palacios et al. ⁴³ 2007	78/87	3.8/13.8	0.279 (0.082-0.952)	· · ·	
Salinas et al, ⁴² 2005	464/454	3.2/10.8	0.300 (0.170-0.526)		
Justino et al, ⁶⁴ 2012	309/300	0.6/1.7	0.388 (0.076-1.986)	· · ·	
Madhi et al,48 2010	1944/960	4.2/11.8	0.358 (0.273-0.471)		
Rojas et al, ⁵² 2007	159/160	3.1/12.5	0.252 (0.097-0.654)		
Colgate et al, ³¹ 2016	292/301	16.8/34.2	0.490 (0.363-0.662)	-	
Zaman et al, ³² 2009	196/98	1.5/4.1	0.375 (0.086-1.643)		
Subtotal I ² = 0%; P <.001	5017/3933	3.7/10.1	0.373 (0.316-0.441)	•	
LIC				_	
Madhi et al, ⁴⁸ 2010	1030/483	8.3/12.6	0.653 (0.479-0.891)	_	
P<.001	1030/483	8.3/12.6	0.653 (0.479-0.891)	•	
Total /2=77.2%; P<.001	8727/5825	3.4/9.8	0.316 (0.224-0.448)	+	
RV1					
HIC				_	
Vesikari et al. ⁶¹ 2006	2207/2305	3.7/13.7	0.272 (0.215-0.344)	—	
Block et al, ⁶⁰ 2007	651/661	2.3/8.2	0.282 (0.161-0.495)		
Vesikari et al,14 2006	237/264	5.1/16.3	0.311 (0.168-0.575)		
Iwata et al,17 2013	380/381	1.8/7.3	0.251 (0.111-0.567)		
Subtotal I ² = 0%; P <.001	3475/3611	3.3/12.2	0.276 (0.226-0.336)	+	
MIC					
Grant et al, 10 2012	295/288	5.4/21.9	0.248 (0.147-0.419)		
Mo et al,27 2017	1930/1946	1.8/5.6	0.315 (0.215-0.460)		
Breiman et al,59 2012	991/978	2.9/6.4	0.454 (0.295-0.699)		
Tapia et al, ⁵⁴ 2012	1556/1562	2.4/5.8	0.408 (0.280-0.594)		
Subtotal /2 = 24.7%; P <.001	4772/4774	2.4/6.8	0.356 (0.279-0.453)	•	
UC					
Tapia et al. ⁵⁴ 2012	845/843	2.6/2.8	0.914 (0.517-1.618)		-
P=.76	845/843	2.6/2.8	0.914 (0.517-1.618)		
Total /2=60.4%; P<.001	9092/9228	2.8/8.6	0.350 (0.275-0.445)		

HIC indicates high-income countries; LIC, low-income countries; LLR, Lanzhou lamb rotavirus; MIC, middle-income countries; RR, relative risk; RVI, monovaler rotavirus vaccine.

- Rotarix (RV1) significantly reduced RVGE (RR, 0.316 [95%CI, 0.224-0.345]) and RVGE hospitalization risk (OR, 0.347 [95%CI, 0.279-0.432]) among fully vaccinated children.
- RotaTeq (RV5) had similar outcomes (RVGE: RR, 0.350 [95%CI, 0.275-0.445]; RVGE hospitalization risk: OR,0.272 [95%CI, 0.197-0.376]).
- Rotavirus vaccines also demonstrated higher protection against severe RVGE.
- Moderate associations were found between reduced RVGE risk and Rotavac (RR, 0.664 [95%CI, 0.548-0.804]).
- All rotavirus vaccines demonstrated no risk of serious adverse events.
- A positive correlation was also found between immunogenicity and vaccine protection.

Conclusions:

- There is high protection and low risk of serious adverse events for rotavirus vaccines in fully vaccinated children.
- This emphasizes the importance of worldwide introduction of rotavirus vaccination.
- Similar protection provided by Rotarix and RotaTeq decreases the pressure of vaccines selection.
- Rotavaq and Rosasiil, which are licensed only in India also showed similar results.

EXPERT COMMENT

- Rotavirus gastroenteritis contributes to 28% deaths due to diarrhea in children below 5 years age.
- Rotavirus vaccine is part of national immunization program in >100 countries. In India, Rotavirus vaccine is being introduced in phased manner.
- High effectiveness and good safety profile of all the licensed vaccines should encourage parents and health care authorities to promote Rotavirus vaccination.

Dr. Parijat Ram Tripathi

MD, DM (Pediatric Gastroenterology)

Consultant Pediatric Gastroenterologist

Ankura Hospital for Women and Children, Hyderabad, India

Dr Moinak Sen Sarma: Editor Ped Gastro – Academic Pearls

	With warm regards,		<u>Reference</u> Sun ZW, Fu Y, Lu HL, Yang RX, Goyal H, Jiang Y,		
DHALIWAL DHALIWAL DI PZ	DR. PIYUSH GUPTA IAP NATIONAL PRESIDENT 2021	DR REMESH KUMAR R. IAP PRESIDENT 2022	Xu HG. Association of Rotavirus Vaccines With Reduction in Rotavirus Gastroenteritis in Children Younger Than 5 Years: A Systematic Review and		
	DR BAKUL JAYANT PAREKH IAP PRESIDENT 2020	DR G.V. BASAVARAJA HON. SECRETARY GEN. 2021 - 22	Meta-analysisofRandomizedClinicalTrialsandObservationalStudies.JAMAPediatr.2021Jul1;175(7):e210347.doi:10.1001/jamapediatrics.2021.0347.Epub2021Jul		

